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Abstract

In this paper, the first nine frequency parameters of circular and annular plates with variable thickness and combined

boundary conditions are computed for different thickness to radius ratios. Several combined boundary conditions are

considered for inner and outer edges. These are free, soft and hard simply supported, and clamped boundary conditions.

Three-dimensional elasticity theory is used. Results of this paper are compared with works of other authors and the results

of finite element method analysis which are in agreement. Data for thick circular and annular plates with linear and

parabolic thickness variation and different combinations are presented for the first time.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

From a practical viewpoint, knowledge of plate vibrations is very important to structural designers. The
majority of previous works in the field are based on two-dimensional (2-D) theories. For thin plates, classical
plate theory can predict natural frequencies, but as the plate thickness increases, the computed frequencies are
over-predicted. To improve the results, Mindlin theory, another 2-D method of analysis, can be used [1]. But
results of Mindlin theory are valid only for lower frequency flexural modes of vibration of moderately thick
plates. Higher-order shear deformation plate theory can be used to account for the effects of the shear
deformation [2].

In three-dimensional (3-D) methods, no priori assumption is made about the plate. This method provides
full elasticity solutions of the vibration problems. The results are completely accurate and no mode is missed.
Not only can the 3-D solutions provide accurate solutions to the problems, but are also useful for assessing
solutions of the 2-D theories.

Free vibration analysis of thick circular and annular plates with variable thickness is performed, and the
results and details are reported in this paper. For very thick plates, the descriptive terminology ‘‘circular and
annular plates’’ loses meaning, and other terms such as ‘‘solid and hollow cylinders’’ make more sense. For a
review of research on thick plate vibration see Ref. [3]. Circular and annular plates with constant thickness
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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have previously been studied by several investigators, see e.g. Ref. [4]. Indeed, creating appropriate variations
in the plate’s thickness could result in better mechanical behaviors of the plates. For example, efficiency of the
plate is improved in situations where there is buckling, bending, and vibration. Vibration analysis of the plates
with variable thickness was also carried out by using 2-D methods [5]. As far as the authors could ascertain,
the first solution of 3-D elasticity vibrations of circular plates is due to Hutchinson [6,7]. Recently, some
authors have used 3-D theories for vibration analysis of circular and annular plates [8–14].

The objective of the current paper is to detail the results of the work undertaken to study the vibrations of
thick circular and annular plate, with variable thickness and different combinations of inner and outer
boundary conditions. The plates were assumed to have linear and nonlinear thickness variation. Free, soft
simply supported, hard simply supported, and clamped boundary conditions were considered for inner and
outer edges. For several different combinations of boundary conditions, simulations were carried out and
numerical results were compared with previous works of the other authors and the results of finite element
method (FEM) analysis. The numerical results in terms of the nondimensional frequency parameters were
presented over a range of relative thickness ratios.

2. Problem statement

Consider an isotropic, thick annular plate with outer radius ro, inner radius ri, minimum thickness 2hi, and
maximum thickness 2ho as depicted in Fig. 1. Clearly, ri ¼ 0 for a circular plate. The plate geometry and
dimensions are defined in an orthogonal cylindrical coordinate systemðr; y; zÞ. The Ritz method was used for
derivation of the eigenvalue equations. Mathematical formulation is not detailed here due to space
constraints. However, one may consult [8–10] for the underlying theory and step-by-step derivation of the
formulation of the problem. Unless otherwise defined, nomenclature of Ref. [14] is adopted in this paper. The
following parameters were also introduced:

R ¼
ri

ro

; H ¼
hi

ho

; d ¼
ho

ro

.

A code was developed for the solution of the associated eigenvalue problem. For all the calculations here,
the Poisson’s ratio has been taken as n ¼ 0:3. The vibration frequency o is expressed in terms of a
nondimensional frequency parameter b ¼ oro

ffiffiffiffiffiffiffiffiffi
r=G

p
. The values in parentheses ðn; sÞ in Tables 1–7 indicate

that the vibrating mode has n nodal diameters and vibrates in the sth mode for the given n value. Different
boundary conditions of the problem were defined by using basic radial functions in each of the displacement
amplitude functions. For a detailed description of the basic radial functions for each of free edge, soft simple
support, hard simple support, and clamped edge see [11]. By definition, only displacement along z-axis is fixed
in soft simply supported plates. Displacements along both r and z axes are, instead, fixed in hard simply
supported plates. In order to check the reliability and accuracy of the method presented in the preceding
section, some convergence tests and comparison studies were performed.

Firstly, a convergence study is performed in Table 1 for the first nine frequency parameters of the annular
plate with nonlinear thickness variation p ¼ 2, different combinations of boundary conditions, i.e. free outer
edge and clamped inner edge with inner–outer radius ratio R ¼ 1

5
, length–radius ratio d ¼ 1

6
and inner–outer

thickness ratio H ¼ 1
3
.

2ho

z

2h
i

θ

r

ri

ro

Fig. 1. Geometry and dimensions of a cross-section of a nonlinear thick annular plate in polar coordinates.



ARTICLE IN PRESS

Table 1

Convergence of the first nine frequency parameters for annular plates with nonlinear thickness variation (p ¼ 2) and different boundary

conditions (R ¼ 1
5
; H ¼ 1

3
and d ¼ 1

6
)

Terms Mode sequence number

N1 �N2 1 2 3 4 5 6 7 8 9

(A) An annular plate with both outer and inner edges free (F– F)

5� 4 0.4318 (2, 0) 0.6746 (0, 0) 1.109 (3, 0) 1.304 (1, 0) 1.557 (2, 1) 1.945 (4, 0) 2.312 (2, 2) 2.661 (0, 1) 2.698 (1, 1)

5� 5 0.4318 (2, 0) 0.6746 (0, 0) 1.109 (3, 0) 1.304 (1, 0) 1.557 (2, 1) 1.945 (4, 0) 2.312 (2, 2) 2.661 (0, 1) 2.698 (1, 1)

6� 4 0.4316 (2, 0) 0.6738 (0, 0) 1.109 (3, 0) 1.293 (1, 0) 1.554 (2, 1) 1.944 (4, 0) 2.299 (2, 2) 2.661 (0, 1) 2.698 (1, 1)

7� 4 0.4315 (2, 0) 0.6734 (0, 0) 1.109 (3, 0) 1.289 (1, 0) 1.553 (2, 1) 1.944 (4, 0) 2.299 (2, 2) 2.661 (0, 1) 2.698 (1, 1)

8� 4 0.4315 (2, 0) 0.6734 (0, 0) 1.109 (3, 0) 1.288 (1, 0) 1.553 (2, 1) 1.944 (4, 0) 2.299 (2, 2) 2.661 (0, 1) 2.698 (1, 1)

9� 4 0.4315 (2, 0) 0.6734 (0, 0) 1.109 (3, 0) 1.287 (1, 0) 1.553 (2, 1) 1.944 (4, 0) 2.299 (2, 2) 2.661 (0, 1) 2.698 (1, 1)

(B) An annular plate with free outer edge and hard simply supported inner edge (F– Sh)

5� 4 0.1217 (1, 0) 0.2047 (0, 0) 0.4413 (2, 0) 1.076 (1, 1) 1.110 (3, 0) 1.487 (0, 1) 1.784 (1, 2) 1.945 (4, 0) 1.964 (2, 1)

6� 4 0.1207 (1, 0) 0.2042 (0, 0) 0.4410 (2, 0) 1.073 (1, 1) 1.110 (3, 0) 1.483 (0, 1) 1.764 (1, 2) 1.944 (4, 0) 1.961 (2, 1)

7� 4 0.1202 (1, 0) 0.2039 (0, 0) 0.4408 (2, 0) 1.072 (1, 1) 1.110 (3, 0) 1.480 (0, 1) 1.762 (1, 2) 1.944 (4, 0) 1.960 (2, 1)

8� 4 0.1198 (1, 0) 0.2037 (0, 0) 0.4408 (2, 0) 1.071 (1, 1) 1.110 (3, 0) 1.479 (0, 1) 1.761 (1, 2) 1.944 (4, 0) 1.959 (2, 1)

9� 4 0.1197 (1, 0) 0.2036 (0, 0) 0.4407 (2, 0) 1.071 (1, 1) 1.110 (3, 0) 1.479 (0, 1) 1.760 (1, 2) 1.944 (4, 0) 1.959 (2, 1)

(C) An annular plate with free outer edge and clamped inner edge (F– C)

5� 4 0.2025 (1, 0) 0.2830 (0, 0) 0.4558 (2, 0) 1.112 (3, 0) 1.233 (1, 1) 1.780 (0, 1) 1.945 (4, 0) 1.999 (1, 2) 2.055 (2, 1)

6� 4 0.2018 (1, 0) 0.2826 (0, 0) 0.4550 (2, 0) 1.112 (3, 0) 1.232 (1, 1) 1.772 (0, 1) 1.945 (4, 0) 1.993 (1, 2) 2.054 (2, 1)

7� 4 0.2014 (1, 0) 0.2823 (0, 0) 0.4544 (2, 0) 1.112 (3, 0) 1.231 (1, 1) 1.767 (0, 1) 1.945 (4, 0) 1.989 (1, 2) 2.053 (2, 1)

8� 4 0.2012 (1, 0) 0.2821 (0, 0) 0.4541 (2, 0) 1.112 (3, 0) 1.231 (1, 1) 1.763 (0, 1) 1.945 (4, 0) 1.986 (1, 2) 2.053 (2, 1)

9� 4 0.2011 (1, 0) 0.2820 (0, 0) 0.4540 (2, 0) 1.112 (3, 0) 1.231 (1, 1) 1.761 (0, 1) 1.945 (4, 0) 1.985 (1, 2) 2.053 (2, 1)
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For the cases (a) and (b) in Table 1, frequency parameters have converged to four-digit accuracy using 9
terms in the radial direction and 4 terms in the thickness direction (i.e. 9� 4 terms) of the Ritz polynomials.
For the case (c), frequency parameters have converged to three-digit accuracy using the same terms (i.e. 9� 4
terms) of the Ritz polynomials. Therefore, a rapid convergence has been obtained for an annular plate with
parabolic thickness variation and free outer–inner edges (F–F) and free outer edge and hard simply supported
inner edge (F–S), while for free outer edge and clamped inner edge (F–C), slightly higher terms are needed.

In Table 2, the accuracy of the first eight eigenfrequencies for circular and annular plates (R ¼ 3
10
) with

different boundary conditions are validated through comparison with the results presented by Zhou et al. [10]
and Liew and yang [11]. For convenience in comparison, a new frequency parameter Z is defined as Z ¼
or2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho=D

p
where Dð¼ Eh3

o=½12ð1� n2Þ�Þ is the flexural rigidity of the plate. In Table 3, the present solutions
are compared with the published values of Kang [14] for completely free circular and annular plates (R ¼ 1

6
)

with linear (p ¼ 1) and parabolic (p ¼ 2) thickness variation for ðH; dÞ ¼ ð1
4
; 1
6
Þ and ð4; 1

24
Þ.

It is observed that the present solutions are in excellent agreement for all cases. The percent discrepancy is
defined by

Discrepancy ð%Þ ¼ f½ðKang ½14� or FEMÞ � authors�=authorsg � 100.

Table 4 shows a comparison study of the present results with the converged finite element solutions
obtained using the FEM. A well-known commercially available FEM package was used for extraction of the
frequency parameters. Before proceeding to the cases for which frequency parameters are calculated for
the first time, the package as well as the solution procedure were examined by solving some problems of the
literature. It was determined that there is an excellent agreement between results of the FEM package and
those of the literature. 3-D solid elements having all six degrees of freedom were adopted in all FEM
calculations. A convergence study was conducted to ensure that the results of the calculations are independent
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Table 2

Comparison of the first eight frequency parameters of circular and annular plates with different boundary conditions by the present

solutions with those of Zhou et al. [10] and Liew and Yang [11,13]

Thickness d Source of reference Mode sequence number

1 2 3 4 5 6 7 8

(A) Circular plate with free boundary condition

0.05 Refa 5.2791 8.8720 12.072 19.737 20.826 31.327 33.110 36.132

Refb 5.2795 8.8720 12.074 19.738 20.831 31.336 33.112 36.132

Authors 5.2793 8.8720 12.073 19.737 20.828 31.330 33.111 36.132

0.15 Refa 4.9005 8.0344 10.439 16.023 16.102 16.750 18.666 25.503

Refb 4.9005 8.0344 10.439 16.023 16.102 16.750 18.666 25.503

Authors 4.9005 8.0344 10.439 16.023 16.102 16.750 18.666 25.503

(B) Circular plate with hard simply supported boundary condition

0.05 Refb 4.8975 13.580 23.725 24.555 28.310 37.472 44.900 49.626

Authors 4.8975 13.580 23.722 24.555 28.310 37.472 44.900 49.624

0.15 Refb 4.6234 7.9235 11.723 16.553 19.453 21.879 23.577 24.622

Authors 4.6234 7.9234 11.721 16.553 19.452 21.879 23.577 24.622

(C) Circular plate with clamped boundary condition

0.05 Refa 9.9755 20.267 32.383 36.692 46.076 54.234 61.113 67.941

Refb 9.9909 20.297 32.430 36.744 46.140 54.308 61.186 67.969

Authors 9.9908 20.297 32.430 36.743 46.139 54.310 61.185 67.970

0.15 Refa 8.4606 15.442 22.654 22.715 25.134 26.176 30.078 34.222

Refb 8.4676 15.453 22.667 22.721 25.150 — 30.093 34.239

Authors 8.4746 15.453 22.766 22.721 25.150 26.176t 30.093 34.240

(D) An annular plate with free outer edge and clamped inner edge (F– C)

0.1 Refa 5.8498 6.1864 6.9366 9.7590 11.756 18.832 18.972 27.409

Refc 5.8662 6.2020 6.9482 — 11.769 18.833 18.973 —

Authors 5.8656 6.2013 6.9478 9.7593t 11.769 18.834 18.972 27.410

(E) An annular plate with hard simply supported outer edge and free inner edge (Sh– F)

0.1 Refc 4.5401 11.240 12.742 15.904 20.852 27.931 30.709 31.543

Authors 4.5402 11.240 12.742 15.905 20.852 27.932 30.709 31.542

(F) An annular plate with both outer and inner edges clamped (C– C)

0.1 Refa 30.688 31.422 34.325 40.231 48.220 48.707 53.067 58.689

Refc 30.743 31.474 34.370 40.266 — 48.736 53.072 —

Authors 30.743 31.474 34.369 40.257 48.220t 48.736 53.071 58.695

0t
¼ torsional mode.
aZhou et al. [10].
bLiew and Yang [13].
cLiew and Yang [11].
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from the number of elements. The number of elements was about 14,000 in all of the solutions. Good
agreements were found between the present results and the finite element solutions.

Having confirmed the convergence test as shown in Table 1 and having determined the high accuracy
through the comparison study illustrated in Tables 2–4, on the basis of the present 3-D Ritz formulation, some
numerical results are given for circular and annular plates of variable thickness with different combinations of
boundary conditions in Tables 5–7.

In Table 5, the frequency parameters for the circular plates ðri ¼ 0Þ of variable thickness ðp ¼ 0; 1; 2Þ for
ðH; dÞ ¼ ð1; 1

5
Þ, ð1

3
; 1
6
Þ and ð3; 1

18
Þ with completely free, hard and soft simply supported and clamped edges are

shown.
In Table 6, the results of frequency parameters for annular plates ðR ¼ ri=ro ¼ 1=5Þ with both edges (outer

and inner) free, soft simply supported and clamped are given with the same values of ðp;H ; dÞ in Table 6.
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Table 4

Comparison of the first nine frequency parameters of annular plates (R ¼ 1
5
) with different boundary conditions between present solution

and FEM

Mode number ½p;H; d�

½1; 4; 118� ½2; 4; 118�

Authors FEM Discrepancy (%) Authors FEM Discrepancy (%)

(A) Annular plates with hard simply supported outer edge and free inner edge (Sh– F)

1 0.5100 0.5109 �0.17 0.5924 0.5934 �0.17

2 1.210 1.220 �0.83 1.412 1.425 �0.92

3 2.051 2.055 �0.20 2.092 2.098 �0.29

4 2.138 2.143 �0.23 2.331 2.339 �0.34

5 2.615 2.623 �0.31 2.933 2.941 �0.27

6 2.913 2.922 �0.30 2.951 2.960 �0.31

7 3.036 3.050 �0.46 3.346 3.352 �0.18

8 3.406 3.417 �0.32 3.381 3.393 �0.36

9 3.467 3.476 �0.26 3.751 3.766 �0.40

(B) Annular plates with both outer and inner edges hard simply supported (Sh– Sh)

1 1.575 1.579 �0.25 1.768 1.770 �0.11

2 1.586 1.591 �0.31 1.807 1.811 �0.22

3 2.110 2.122 �0.57 2.104 2.111 �0.33

4 2.153 2.161 �0.31 2.396 2.401 �0.13

5 2.914 2.920 �0.21 2.952 2.963 �0.27

6 3.043 3.055 �0.40 3.367 3.375 �0.24

7 3.996 4.001 �0.13 3.986 3.998 �0.30

8 4.179 4.189 �0.24 4.233 4.245 �0.28

Table 3

Comparison of the first five frequency parameters of completely free circular and annular plates with linear and parabolic thickness

variation by the present solutions with Kang [14]

Mode number ½p;H; d�

½1; 14;
1
6� ½2; 14;

1
6�

Authors Kang [14] Discrepancy (%) Authors Kang [14] Discrepancy (%)

ðR ¼ 0Þ (A) Circular plates with free boundary condition

1 0.5301 0.5301 0.0000 0.4410 0.4410 0.0000

2 0.8106 0.8106 0.0000 0.6678 0.6678 0.0000

3 1.301 1.301 0.000 1.129 1.129 0.000

4 1.732 1.732 0.000 1.358 1.358 0.000

5 1.936 1.936 0.000 1.794 1.794 0.000

ðR ¼ 1
6Þ (B) Annular plates with free boundary condition

1 0.4932 0.4932 0.0000 0.4116 0.4116 0.0000

2 0.7613 0.7611 �0.0260 0.6343 0.6343 0.0000

3 1.242 1.242 0.000 1.071 1.071 0.000

4 1.490 1.489 �0.067 1.189 1.188 �0.084

5 1.621 1.621 0.000 1.542 1.542 0.000
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In Table 7, the frequency parameters for annular plates ðR ¼ ri=ro ¼ 1=5Þ with hard and soft simply
supported outer edge and free inner edge (S–F), clamped outer edge and free inner edge (C–F), clamped outer
edge and soft simply supported inner edge (C–S) and soft simply supported outer edge and clamped inner edge
(S–C) are given with the same values of ðp;H ; dÞ in Tables 5 and 6.
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Table 5

Results for the first nine frequency parameters b for non-uniform circular plates (ri ¼ 0) with different boundary conditions

Mode number ½p;H; d�

½0; 1; 1
5
� ½1; 1

3
; 1
6
� ½1; 3; 1

18
� ½2; 1

3
; 1
6
� ½2; 3; 1

18
�

(A) Circular plates with free boundary condition

1 0.9078 (2, 0) 0.5528 (2, 0) 0.6377 (2, 0) 0.4685 (2, 0) 0.7646 (2, 0)

2 1.462 (0, 0) 0.8553 (0, 0) 1.058 (0, 0) 0.7184 (0, 0) 1.271 (0, 0)

3 1.860 (3, 0) 1.336 (3, 0) 1.142 (3, 0) 1.177 (3, 0) 1.404 (3, 0)

4 2.346 (2, 1) 1.834 (1, 0) 1.722 (4, 0) 1.503 (1, 0) 2.096 (4, 0)

5 2.731 (1, 0) 2.001 (2, 1) 1.950 (1, 0) 1.895 (2, 1) 2.361 (1, 0)

6 2.780 (1, 1) 2.256 (4, 0) 2.774 (2, 1) 2.040 (4, 0) 2.755 (2, 1)

7 2.889 (4, 0) 2.719 (1, 1) 2.810 (1, 1) 2.565 (2, 2) 2.860 (1, 1)

8 3.436 (0, 1) 3.018 (2, 2) 2.952 (2, 2) 2.600 (0, 1) 3.457 (2, 2)

9 3.600 (3, 1) 3.097 (0, 1) 3.319 (0, 1) 2.980 (0, 2) 3.821 (0, 1)

(B) Circular plates with soft simply supported boundary condition

1 0.8638 (0, 0) 0.5414 (0, 0) 0.4797 (0, 0) 0.4704 (0, 0) 0.5768 (0, 0)

2 2.059 (1, 0) 1.416 (1, 0) 1.162 (1, 0) 1.185 (1, 0) 1.380 (1, 0)

3 2.346 (2, 0) 2.002 (2, 0) 2.030 (2, 0) 1.896 (2, 0) 2.305 (2, 0)

4 2.743 (1, 1) 2.457 (2, 1) 2.491 (0, 1) 2.134 (2, 1) 2.756 (2, 1)

5 3.268 (2, 1) 2.723 (0, 1) 2.774 (2, 1) 2.261 (0, 1) 2.792 (0, 1)

6 3.440 (0, 1) 2.729 (1, 1) 2.813 (1, 1) 2.694 (1, 1) 2.863 (1, 1)

7 3.605 (3, 0) 3.102 (0, 2) 2.897 (3, 0) 2.986 (0, 2) 3.269 (3, 0)

8 3.707 (0, 2) 3.255 (3, 0) 3.698 (1, 2) 3.083 (3, 0) 3.916 (0, 2)

9 4.261 (2, 2) 3.596 (3, 1) 3.799 (4, 0) 3.203 (3, 1) 4.118 (1, 2)

(C) Circular plates with clamped boundary condition

1 1.486 (0, 0) 1.278 (0, 0) 0.7217 (0, 0) 1.189 (0, 0) 0.8008 (0, 0)

2 2.595 (1, 0) 2.143 (1, 0) 1.507 (1, 0) 1.977 (1, 0) 1.688 (1, 0)

3 3.332 (1, 1) 3.118 (2, 0) 2.436 (2, 0) 2.892 (2, 0) 2.658 (2, 0)

4 3.715 (2, 0) 3.325 (0, 1) 2.751 (1, 1) 3.008 (0, 1) 2.732 (1, 1)

5 3.832 (0t, 0) 3.832 (1, 1) 2.751 (1, 1) 3.140 (0, 1) 2.732 (1, 1)

6 4.096 (0, 1) 4.182 (3, 0) 3.343 (0t, 0) 3.898 (3, 0) 3.140 (0, 1)

7 4.855 (3, 0) 4.183 (0t, 0) 3.347 (3, 0) 3.995 (1, 1) 3.271 (0t, 0)

8 5.177 (2, 1) 4.500 (1, 2) 4.140 (1, 2) 4.108 (1, 2) 3.272 (3, 0)

9 5.370 (1, 2) 5.292 (4, 0) 4.279 (4, 0) 4.370 (0t, 0) 4.477 (1, 2)

10 5.471 (1, 3) 5.294 (2, 1) 4.922 (2, 1) 5.267 (2, 1) 4.748 (2, 1)

(D) Circular plates with hard simply boundary condition

1 0.8638 (0, 0) 0.5414 (0, 0) 0.4797 (0, 0) 0.4704 (0, 0) 0.5768 (0, 0)

2 1.161 (1, 0) 1.257 (1, 0) 1.017 (1, 0) 1.210 (1, 0) 1.008 (1, 0)

3 2.081 (1, 1) 1.437 (1, 1) 1.164 (1, 1) 1.294 (1, 1) 1.382 (1, 1)

4 2.424 (2, 0) 2.084 (2, 0) 2.038 (2, 0) 2.001 (2, 0) 2.312 (2, 0)

5 3.327 (2, 1) 2.515 (2, 1) 2.491 (0, 1) 2.199 (2, 1) 2.312 (2, 0)

6 3.440 (0, 1) 2.723 (0, 1) 2.835 (2, 1) 2.261 (0, 1) 2.801 (2, 1)

7 3.605 (3, 0) 3.102 (0, 2) 2.915 (3, 0) 2.986 (0, 2) 3.271 (0t, 0)

8 3.707 (0, 2) 3.256 (3, 0) 3.700 (1, 2) 3.083 (3, 0) 3.284 (3, 0)

9 3.832 (0t, 0) 3.690 (3, 1) 3.829 (4, 0) 3.306 (3, 1) 4.119 (1, 2)

0t
¼ torsional mode.
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3. Conclusions

Based on the small strain and linear elasticity theory, an exhaustive study of 3-D free vibration of thick,
circular and annular plates with linear and parabolic thickness variation and different combinations inner and
outer boundary conditions has been performed. The influences of the plate thickness ratios, linear and
parabolic thickness variation and different boundary conditions on the frequency parameters are examined.
The Ritz method is applied to derive the eigenvalue equation. The excellent accuracy of the method has been
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Table 6

Results for the first nine frequency parameters b for non-uniform circular plates (R ¼ 1
5
) with different boundary conditions

Mode number ½p;H; d�

½0; 1; 1
5
� ½1; 1

3
; 1
6
� ½1; 3; 1

18
� ½2; 1

3
; 1
6
� ½2; 3; 1

18
�

(A) Annular plates with both outer and inner edges free (F– F)

1 0.8546 (2, 0) 0.5071 (2, 0) 0.6399 (2, 0) 0.4315 (2, 0) 0.7367 (2, 0)

2 1.381 (0, 0) 0.7927 (0, 0) 1.094 (0, 0) 0.6734 (0, 0) 1.239 (0, 0)

3 1.851 (3, 0) 1.267 (3, 0) 1.255 (3, 0) 1.109 (3, 0) 1.500 (3, 0)

4 1.880 (2, 1) 1.544 (1, 0) 1.875 (4, 0) 1.288 (1, 0) 2.091 (2, 1)

5 2.498 (1, 0) 1.596 (2, 1) 2.000 (1, 0) 1.553 (2, 1) 2.257 (4, 0)

6 2.787 (1, 1) 2.171 (4, 0) 2.137 (2, 1) 1.944 (4, 0) 2.282 (1, 0)

7 2.889 (4, 0) 2.713 (0, 1) 2.906 (1, 1) 2.299 (2, 2) 2.943 (1, 1)

8 3.031 (0, 1) 2.743 (1, 1) 3.065 (2, 2) 2.661 (0, 1) 3.346 (0, 1)

9 3.502 (3, 1) 3.064 (3, 1) 3.405 (0, 1) 2.698 (1, 1) 3.558 (2, 2)

(B) Annular plates with both outer and inner edges soft simply supported (S– S)

1 2.253 (0, 0) 1.358 (0, 0) 1.575 (1, 0) 1.124 (0, 0) 1.768 (0, 0)

2 2.468 (1, 0) 1.602 (2, 0) 1.586 (0, 0) 1.370 (1, 0) 1.807 (1, 0)

3 2.800 (1, 1) 1.633 (1, 0) 2.110 (2, 0) 1.558 (2, 0) 2.104 (2, 0)

4 3.054 (0, 1) 2.383 (2, 1) 2.153 (2, 1) 2.049 (2, 1) 2.396 (2, 1)

5 3.294 (2, 0) 2.722 (0, 1) 2.914 (1, 1) 2.670 (0, 1) 2.952 (1, 1)

6 3.510 (3, 0) 2.755 (1, 1) 3.043 (3, 0) 2.709 (1, 1) 3.367 (0, 1)

7 4.081 (2, 1) 3.072 (3, 0) 3.431 (0, 1) 2.939 (3, 0) 3.390 (3, 0)

8 4.466 (3, 1) 3.429 (3, 1) 3.996 (4, 0) 3.010 (3, 1) 3.986 (3, 1)

9 4.686 (4, 0) 4.058 (2, 2) 4.179 (2, 2) 4.017 (2, 2) 4.233 (2, 2)

(C) Annular plates with both outer and inner edges clamped (C– C)

1 3.138 (0, 0) 2.640 (0, 0) 2.380 (0, 0) 2.602 (0, 0) 2.404 (0, 0)

2 3.306 (1, 0) 2.779 (1, 0) 2.427 (1, 0) 2.715 (1, 0) 2.484 (1, 0)

3 3.917 (2, 0) 3.273 (2, 0) 2.789 (2, 0) 3.114 (2, 0) 2.937 (2, 0)

4 4.236 (0t, 0) 4.106 (3, 0) 3.533 (3, 0) 3.842 (3, 0) 3.649 (0t, 0)

5 4.722 (1, 1) 4.571 (0t, 0) 3.760 (0t, 0) 4.798 (0t, 0) 3.779 (3, 0)

6 4.893 (3, 0) 4.978 (1, 1) 4.317 (1, 1) 4.799 (4, 0) 4.175 (1, 1)

7 5.740 (2, 1) 5.155 (4, 0) 4.445 (4, 0) 5.222 (1, 1) 4.776 (4, 0)

8 6.009 (4, 0) 5.588 (0, 1) 5.280 (0, 1) 5.349 (0, 1) 5.245 (2, 1)

9 6.328 (0, 1) 5.727 (1, 2) 5.452 (2, 1) 5.470 (1, 2) 5.439 (0, 1)

0t
¼ torsional mode.
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demonstrated by the convergence and comparison studies. In the present analysis, a set of orthogonal
polynomial series multiplying by a boundary function was adopted as the admissible functions of each
displacement component. Thorough convergence studies shown in Table 1 have been made, which indicate
that the benchmark frequency values given in Tables 5–7 have converged to at least three significant figures.
The first nine frequency parameters of thick circular and annular plates with different boundary conditions
were presented for the first time. The plates are considered to have either a constant thickness or variable
thickness. For the case of variable thickness, linear and parabolic thickness variations were considered. The
frequency parameters were given for inner–outer radius ratio R ¼ 1

5
and different combinations of length to

radius and inner to outer thickness ratios. For circular plates, frequency parameters were given for four
different types of boundary conditions, i.e. free, clamped, hard simply supported, and soft simply supported.
For annular plates, frequency parameters were given for seven combinations of boundary conditions, i.e. both
outer and inner edges free, both outer and inner edges soft simply supported, both outer and inner
edges clamped, softly simply supported outer edge and free inner edge, clamped outer edge and free inner
edge, clamped outer edge and soft simply supported inner edge, and hard simply supported outer edge and free
inner edge.

After the validation of the present results (convergence and comparison) with the available analytical
solutions, and also the finite element solutions for some problems in the literature, the results in Tables 1 and
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Table 7

Results for the first nine frequency parameters b for non-uniform circular plates (R ¼ 1
5
) with different boundary conditions

Mode number ½p;H; d�

½0; 1; 1
5
� ½1; 1

3
; 1
6
� ½1; 3; 1

18
� ½2; 1

3
; 1
6
� ½2; 3; 1

18
�

(A) Annular plates with soft simply supported outer edge and free inner edge (S– F)

1 0.8335 (0, 0) 0.5095 (0, 0) 0.5100 (0, 0) 0.4475 (0, 0) 0.5924 (0, 0)

2 1.921 (1, 0) 1.227 (1, 0) 1.210 (1, 0) 1.039 (1, 0) 1.412 (1, 0)

3 2.799 (1, 1) 1.598 (2, 0) 2.051 (2, 0) 1.555 (2, 0) 2.092 (2, 0)

4 3.035 (0, 1) 2.267 (2, 1) 2.138 (2, 1) 1.943 (2, 1) 2.331 (2, 1)

5 3.192 (2, 0) 2.718 (0, 1) 2.615 (0, 1) 2.342 (0, 1) 2.933 (0, 1)

6 3.507 (3, 0) 2.755 (1, 1) 2.913 (1, 1) 2.667 (0, 2) 2.951 (1, 1)

7 3.951 (0, 2) 2.953 (0, 2) 3.036 (3, 0) 2.709 (1, 1) 3.346 (0, 2)

8 4.078 (2, 1) 3.070 (3, 0) 3.406 (0, 2) 2.937 (3, 0) 3.381 (3, 0)

9 4.450 (3, 1) 3.404 (3, 1) 3.467 (1, 2) 2.938 (1, 2) 3.751 (1, 2)

(B) Annular plates with clamped outer edge and free inner edge (C– F)

1 1.541 (0, 0) 1.394 (0, 0) 0.7499 (0, 0) 1.240 (0, 0) 0.8150 (0, 0)

2 2.444 (1, 0) 1.958 (1, 0) 1.518 (1, 0) 1.781 (1, 0) 1.672 (1, 0)

3 3.582 (1, 1) 2.943 (2, 0) 2.423 (2, 0) 2.692 (2, 0) 2.643 (2, 0)

4 3.621 (2, 0) 3.681 (0, 1) 2.908 (1, 1) 3.258 (0, 1) 2.917 (1, 1)

5 3.861 (0t, 0) 4.016 (3, 0) 3.024 (0, 1) 3.702 (1, 1) 3.267 (0t, 1)

6 4.302 (0, 1) 4.104 (1, 1) 3.298 (0t, 0) 3.703 (3, 0) 3.272 (0, 1)

7 4.337 (2, 1) 4.212 (1, 2) 3.451 (3, 0) 4.336 (1, 2) 3.718 (3, 0)

8 4.820 (3, 0) 4.332 (0t, 1) 3.794 (2, 1) 4.492 (0t, 0) 3.767 (2, 1)

9 4.910 (1, 2) 4.856 (2, 1) 3.803 (1, 2) 4.767 (4, 0) 4.020 (1, 2)

(C) Annular plates with clamped outer edge and soft simply supported inner edge (C– S)

1 2.932 (0, 0) 2.383 (0, 0) 1.966 (1, 0) 2.276 (0, 0) 2.093 (0, 0)

2 3.056 (1, 0) 2.560 (1, 0) 1.968 (0, 0) 2.419 (1, 0) 2.138 (1, 0)

3 3.581 (1, 1) 3.139 (2, 0) 2.500 (2, 0) 2.918 (2, 0) 2.722 (2, 0)

4 3.740 (2, 0) 4.060 (3, 0) 2.907 (1, 1) 3.757 (3, 0) 2.916 (1, 1)

5 3.861 (0t, 0) 4.213 (1, 1) 3.298 (0t, 1) 4.336 (1, 1) 3.267 (0t, 0)

6 4.354 (2, 1) 4.332 (0t, 0) 3.458 (3, 0) 4.492 (0t, 0) 3.740 (3, 0)

7 4.839 (3, 0) 4.869 (2, 1) 3.816 (2, 1) 4.776 (4, 0) 3.783 (2, 1)

8 5.580 (1, 2) 5.142 (4, 0) 4.439 (4, 0) 4.970 (0, 1) 4.776 (4, 0)

9 5.634 (0, 1) 5.315 (0, 1) 5.084 (0, 1) 5.014 (0, 1) 5.094 (1, 2)

(D) Annular plates with hard simply supported outer edge and free inner edge (Sh– F)

1 0.8335 (0, 0) 0.5095 (0, 0) 0.5100 (0, 0) 0.4475 (0, 1) 0.5924 (0, 0)

2 1.200 (1, 0) 1.250 (1, 0) 1.048 (1, 0) 1.064 (1, 0) 1.049 (1, 0)

3 1.914 (2, 0) 1.307 (1, 1) 1.212 (1, 1) 1.336 (1, 1) 1.414 (1, 1)

4 1.942 (1, 1) 1.658 (2, 0) 2.059 (2, 0) 1.641 (2, 0) 2.097 (2, 0)

5 3.035 (0, 1) 2.327 (2, 1) 2.144 (2, 1) 2.009 (2, 1) 2.338 (2, 1)

6 3.249 (2, 1) 2.718 (0, 1) 2.615 (0, 1) 2.342 (0, 1) 2.933 (0, 1)

7 3.509 (3, 0) 2.953 (0, 2) 3.053 (3, 0) 2.667 (0, 2) 3.267 (0t, 0)

8 3.861 (0t, 0) 3.072 (3, 0) 3.298 (0t, 0) 2.937 (3, 0) 3.346 (0, 2)

9 3.951 (0, 3) 3.500 (3, 1) 3.406 (0, 2) 2.946 (1, 2) 3.396 (3, 0)

0t
¼ torsional mode.
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5–7 can serve as benchmark solutions for researchers to validate their numerical methods (i.e. classical, 3-D
and 3-D theories) and for designers to use such plates in their structures in the future.
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